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Abstract

Over the last two centuries, the impact of the Human System has grown dramatically, becoming
strongly dominant within the Earth System in many different ways. Consumption, inequality, and pop-
ulation have increased extremely fast, especially since about 1950, threatening to overwhelm the many
critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have
important feedback effects on the Human System, with costly and potentially serious consequences.
However, current models do not incorporate these critical feedbacks. We argue that in order to un-
derstand the dynamics of either system, Earth System Models must be coupled with Human System
Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that
exist in the real systems. In particular, key Human System variables, such as demographics, inequality,
economic growth, and migration, are not coupled with the Earth System but are instead driven by
exogenous estimates, such as UN population projections. This makes current models likely to miss
important feedbacks in the real Earth-Human system, especially those that may result in unexpected
or counterintuitive outcomes, and thus requiring different policy interventions from current models.
The importance and imminence of sustainability challenges, the dominant role of the Human System
in the Earth System, and the essential roles the Earth System plays for the Human System, all call
for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and
modeling to develop coupled Earth-Human system models for devising effective science-based policies
and measures to benefit current and future generations.

Significance Statement

The Human System has become strongly dominant within the Earth System in many different ways.
However, in current models that explore the future of humanity and environment, and guide policy, key
Human System variables, such as demographics, inequality, economic growth, and migration, are not
coupled with the Earth System but are instead driven by exogenous estimates such as United Nations
(UN) population projections. This makes the models likely to miss important feedbacks in the real Earth-
Human system that may result in unexpected outcomes requiring very different policy interventions. The
importance of humanity’s sustainability challenges calls for collaboration of natural and social scientists to
develop coupled Earth-Human system models for devising effective science-based policies and measures.

Highlights

1. The Human System has become strongly dominant within the Earth System in many different ways.

(a) Consumption, inequality, and population have increased extremely fast, especially since about
1950.

(b) The collective impact of these changes threatens to overwhelm the viability of natural systems
and the many critical functions that the Earth System provides.

2. Changes in the Earth System, in turn, have important feedback effects on the Human System, with
costly and serious consequences.

3. However, current models, such as the Integrated Assessment Models, that explore the future of
humanity and environment, and guide policy, do not incorporate these critical feedbacks.

(a) Key Human System variables, such as demographics, inequality, economic growth, and migra-
tion, are instead driven by exogenous projections, such as the UN population tables.

(b) Furthermore, such projections are shown to be unreliable.

4. Unless models incorporate such two-way couplings, they are likely to miss important dynamics in the
real Earth-Human system that may result in unexpected outcomes requiring very different policy
interventions.
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5. Therefore, Earth System Models must be bidirectionally coupled with Human System Models.

(a) Critical challenges to sustainability call for a strong collaboration of both earth and social
Scientists to develop coupled Earth-Human System models for devising effective science-based
policies and measures.

(b) We suggest using Dynamic Modeling, Input-Output Models, and Data Assimilation to build
and calibrate such coupled models.

Description of Sections

Section 1 describes major changes in the relationship between the Earth System and the Human System,
and key Human System factors driving these changes. Section 2 provides examples of fundamental
problems in the exogenous projections of key Human System factors used in current models. Section 3
describes examples of changes in the Earth System that may impact the Human System seriously, as well
as missing feedbacks from the Earth System onto the Human System. Section 4 argues for the need to
bidirectionally couple both systems in order to model the future of either system more realistically, and
proposes practical methods to implement this coupling.

1 Dominance of the Human System within the Earth System

Humans impact the Earth System by extracting resources and returning waste and pollution to the
system, and simultaneously altering land cover, fragmenting ecosystems, and reducing biodiversity.1 The
level of this impact is determined by extraction and pollution rates, which in turn, are determined by
the total consumption rate. Total consumption equals population multiplied by average consumption per
capita, both of which are recognized as primary drivers of human environmental impact.2

The rapid expansion of the human system has been a remarkably recent phenomenon (see Fig. 1).
For over 90% of human existence, world population remained less than 5 million. After the Agricultural
Revolution, it still took about 10,000 years to reach one billion, around the year 1800. About a century
later the second billion was reached, around 1930. Thereafter, in less than a century, five billion more
humans were added (within a single human lifetime). The peak in the rate of growth occurred in the
1960s, but because of the larger total population, the peak in absolute growth has persisted since the early
1990s [United Nations, 2015]. To go from 5 to 6 billion took about 12 years (1987–1999), and from 6 to 7
billion also took about 12 years (1999–2011). The decline in the rate of growth over the past few decades
has not significantly reduced the absolute number currently added every year, ∼80 million (e.g., 83 million
in 2016), equivalent to the population of Germany [Christenson, 2002; United Nations, 2013a]. A similar
pattern holds for GDP per capita, but with the acceleration of growth occurring even more recently (see
Fig. 1) and with the distribution of consumption becoming much more unequal. Thus, until the last
century, population and GDP per capita were low enough that the Human System remained a relatively
small component of the Earth System. However, both population and GDP per capita experienced
explosive growth, especially after ∼1950, and the product of these two growths — total human impact —
has grown from relatively small to dominant in the Earth System.

Contrary to popular belief, these trends still continue for both population and consumption per capita.
The world is projected to add a billion people every 13–15 years for decades to come. The current UN
medium estimate expects 11.2 billion people by 2100, while the high estimate is 16.6 billion.3 Similarly,
while the highest rates of growth of global per capita GDP took place in the 1960s, they are not projected
to decline significantly from their current rates (so that estimates of annual global growth until 2040 range
from 3.3% (IMF and IEA) to 3.8% (US EIA), implying a doubling time of about 20 years).4

Two major factors enabled this demographic explosion. First, advances in public health, sanitation,
and medicine significantly reduced mortality rates and lengthened average life-span. Second, the rapid and
large-scale exploitation of fossil fuels [Krausmann et al., 2009] — a vast stock of nonrenewable resources
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Main Graph: Population and GDP per capita from 
year 1 to 2010 AD. The total impact is their product.

Inset: Annual Growth of Total Consumption (Total GDP)
from 1950 to 2010 as the sum of contributions from
Population Growth and GDP per capita Growth.

Figure 1: World population and GDP per capita from year 1 to 2010 AD. The total human impact is their
product. The inset shows the relative annual change of each between 1950 and 2010 [Maddison, 2001;
Bolt and van Zanden, 2014; United Nations, 2013b]. Their averages were 1.69% and 2.21%, respectively,
out of a total of ∼4% (average annual change in GDP). Therefore, growth in population and consumption
per capita have both played comparably important roles in the remarkable increase of human impact on
planet Earth. This ∼4% total growth corresponds to doubling the total impact every 17 years. Note
that the contribution from population growth has been relatively steady, while the contribution from the
relative change in GDP per capita has been much more variable from year to year (even negative for
some years). See Endnote 2 for a description of the mathematical formula used to generate the inset and
sources of data.

accumulated by Nature over hundreds of millions of years that are being drawn down in just a few centuries
— and the invention of the HaberBosch process to use natural gas to produce nitrogen fertilizer [Smil,
2004; Erisman et al., 2008] enabled increasingly higher levels of food and energy production. All these
factors allowed fast growth of the human system [Warren, 2015; Smil, 1999].5

Technological advances also allowed for the rapid increase in consumption per capita (see Fig. 1). This
increase was made possible by a dramatic expansion in the scale of resource extraction, which, by pro-
viding a very large increase in the use of inputs, greatly increased production, consumption, throughput,
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and waste. During the fossil fuel era, per capita global primary energy and per capita global materials
consumption have significantly increased over time. Despite tremendous advances in technological effi-
ciencies, world energy use has increased for coal, oil, gas, and electricity since 1900, and global fossil fuel
use per capita has continued to rise over the last few decades. There is no empirical evidence of reduc-
tion in use per capita, nor has there been an abandonment or long-term decline of one category through
substitution by another. The same applies to global per capita use of materials for each of the major
materials categories of minerals — industrial, construction, materials for ores, and materials derived from
fossil energy carriers.6

The rapidly growing size and influence of the Human System has come to dominate the Earth System
in many different ways [Crutzen, 2006; Rockström et al., 2009; Barnosky et al., 2012; Crutzen, 2002].
Estimates of the global net primary production (of vegetation) appropriated by humans range as high
as 55%, and the percentage impacted, not just appropriated, is much larger [Rojstaczer et al., 2001;
Imhoff et al., 2004; Haberl et al., 2007; Lauk and Erb, 2009; Zeng and Yoon, 2009; Zeng et al., 2014;
Liu et al., 2015; Haberl et al., 2011; Foley et al., 2005; Krausmann et al., 2013; Millennium Ecosystem
Assessment, 2005]. Human activity has also had a net negative effect on total global photosynthetic
productivity since the most productive areas of land are directly in the path of urban sprawl [Imhoff
et al., 2000]. Human use of biomass for food, feed, fiber, fuel, and materials, has become a primary
component of global biogeochemical cycles of carbon, nitrogen, phosphorous, and other nutrients. Land-
use for biomass production is one of the most important stressors on biodiversity, while total biomass use
has continued to grow and demand is expected to continue growing over the next few decades [Krausmann
et al., 2008a]. Global food demand alone has been projected to double or more from 2000 to 2050 due
to both rising population and rising incomes [Tilman et al., 2011]. Most agriculturally usable land has
already been converted to agriculture [Tilman et al., 2002]. Most large mammals are now domesticated
animals [Kareiva et al., 2007; Lyons et al., 2004]. Soils worldwide are being eroded, fisheries exhausted,
forests denuded, and aquifers drawn down, while desertification due to overgrazing, deforestation, and soil
erosion is spreading [Scholes and Scholes, 2013; Vitousek et al., 1997b; Döll et al., 2014; Aeschbach-Hertig
and Gleeson, 2012]. Deforestation, in turn, affects local climate through evapotranspiration and albedo
[Li et al., 2015, 2016]. Since climate change is expected to make subtropical regions drier, desertification
is expected to further increase, especially due to bidirectional albedo-vegetation feedback [Zeng and Yoon,
2009].

At the same time, greenhouse gases from fossil fuels, together with land-use change, have become the
major drivers of global climate change [Hansen et al., 2013; Ciais et al., 2013; Crutzen, 2002]. Atmospheric
levels of carbon dioxide, methane, and nitrous oxide not only exceed pre-industrial concentrations by about
40%, 150%, and 20%, respectively, they are now substantially above their maximum ranges of fluctuation
over the past 800,000 years7 [Ciais et al., 2013] while total carbon dioxide emissions continue to grow at a
rapid rate [Marland et al., 2012]. Arctic sea ice, Antarctic and Greenland ice sheets, global glacier mass,
permafrost area, and Northern Hemisphere snow cover are all decreasing substantially, while ocean surface
temperatures, sea level, and ocean acidification are rising [Ciais et al., 2013]. Arctic sea ice is decreasing
at an average rate of 3.0 ± 0.3 m2 per metric ton of CO2 emissions, and at the current emissions rate
of 35 gigaton per year could completely disappear by 2050 during Septembers [Notz and Stroeve, 2016].
The rate of ocean acidification, in particular, is currently estimated to be at least 100 times faster than
at any other time in the last 20 million years [Rockström et al., 2009].

The Human System dominates the global nitrogen cycle, having produced a 20% rise in nitrous oxide
(N2O) in the atmosphere, now the third largest contributor to global warming, and a tripling of ammonia
(NH3) in the atmosphere due to human activities [Galloway et al., 2004]. In total, human processes
produce more reactive nitrogen than all natural processes combined [Canfield et al., 2010; Rockström
et al., 2009; Gruber and Galloway, 2008; Howarth et al., 2012; Vitousek et al., 1997a; Holtgrieve et al.,
2011], altering the global nitrogen cycle so fundamentally that Canfield et al. [2010] estimate the closest
geological comparison occurred about 2.5 billion years ago. Nitrogen and phosphorus fertilizer runoff,
along with nitrogen oxides from fossil-fuel combustion (which is then deposited by rain over land and
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water) are causing widespread eutrophication in rivers, lakes, estuaries, and coastal oceans, and creating
massive Dead Zones, with little or no oxygen, which are increasing in number and size in coastal waters
and oceans globally, killing large swaths of sea life and damaging or destroying fisheries. This may be
compounded further by potentially dangerous positive feedbacks between hypoxia, ocean acidification,
and rising sea temperatures [Cai et al., 2011; Carstensen et al., 2014; Rabotyagov et al., 2014; Melzner
et al., 2012; Rockström et al., 2009; Vaquer-Sunyer and Duarte, 2008; Ekstrom et al., 2015; Canfield et al.,
2010; Tilman et al., 2001].

Human activities also dominate many regional hydrological cycles [Molle et al., 2010; Vörösmarty
et al., 2000; Grasby, 2004; Molden, 2007; Meybeck, 2003; Gordon et al., 2008; Wagener et al., 2010;
Barnett et al., 2008], with more than half of all accessible surface freshwater being used by humans, to
such an extent that some major rivers are being so excessively depleted that they sometimes no longer
reach the sea, while some major inland fresh and salty water bodies, such as Lake Chad, Lake Urmia, Lake
Poopó and Aral Sea, are drying up. In many of the principal aquifers that support the world’s agricultural
regions and in most of the major aquifers in the world’s arid and semi-arid zones, groundwater extraction
is occurring at far greater rates than natural recharge. This includes aquifers in the US High Plains
and Central Valley, the North China Plain, Australia’s Canning Basin, the Northwest Sahara Aquifer
System, the Guarani Aquifer in South America, and the aquifers beneath much of the Middle East and
northwestern India [Famiglietti, 2014; Konikow, 2013; Castle et al., 2014; Famiglietti and Rodell, 2013;
Voss et al., 2013; Famiglietti et al., 2011; Rodell et al., 2009; Scanlon et al., 2012]. Climate change can
increase the frequency and severity of extreme weather events, such as hot and cold temperature extremes,
heat waves, droughts, heavy precipitation, tropical cyclones, and storms [Mei and Xie, 2016; Wuebbles
et al., 2013; Cai et al., 2015, 2014; Meehl and Tebaldi, 2004; Easterling et al., 2000]. In addition, more
impervious surfaces together with other land cover changes increase runoff significantly, hence intensifying
the adverse impacts of extreme hydrological events [Arnold and Gibbons, 1996; Di Baldassarre et al., 2009;
Scanlon et al., 2006].

Many other socioeconomic trends and their impacts on the Earth System have accelerated syn-
chronously since the 1950s with little sign of abatement [Steffen et al., 2015, 2006]. For example, hu-
man processes play a major role in virtually every major metal cycle, leading to atmospheric and direct
contamination of terrestrial and aquatic environments by trace-metal pollutants. Coal combustion is the
major source of atmospheric Cr, Hg, Mn, Sb, Se, Sn, and Tl emissions, oil combustion of Ni and V,
and gasoline combustion of Pb, while non-ferrous metal production is the largest source of As, Cd, Cu,
In, and Zn [Pacyna and Pacyna, 2001]. Surface mining has also become a dominant driver of land use
change and water pollution in certain regions of the world, where mountaintop removal, coal and tar
sands exploitation, and other open pit mining methods strip land surfaces of forests and topsoils, produce
vast quantities of toxic sludge and solid waste, and often fill valleys, rivers, and streams with the resulting
waste and debris [Palmer et al., 2010]. All of these trends can have an impact on other species, and while
the exact causes are difficult to establish, current animal and plant species extinction rates are estimated
to be at least 100 times the natural background rate [Regan et al., 2001; Vitousek et al., 1997b; Mace
et al., 2005; Kolbert, 2014]. Furthermore, ecosystems worldwide are experiencing escalating degradation
and fragmentation, altering their health and provision of important ecosystem functions and services for
humans and other species.8

Thus, the Human System has fundamentally impacted the Earth System in a multitude of ways. But
as we will show, these impacts on the Earth System also feed back onto the Human System through
various factors and variables: human health, fertility, well-being, population, consumption, economic
growth, development, migration, and even producing societal conflict. Rather than incorporate these
feedbacks, current models simply use independent projections of these human system variables, often in
a highly unreliable way.
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2 Inequality, Consumption, Demographics, and Other Key Human System Proper-
ties: Projections vs. Bidirectional Coupling

These large human impacts on the Earth System must be considered within the context of the large global
economic inequality to realize that current levels of resource extraction and throughput only support
societies at First World living standards for about 17% of the world’s current population [United Nations,
2015]. The majority of the world’s people live at what would be considered desperate poverty levels in
developed countries, the average per capita material and energy use in developed countries is higher than
in developing countries by a factor of 5 to 10 [Krausmann et al., 2008a], and the developed countries are
responsible for over three quarters of cumulative greenhouse gas emissions from 1850 to 2000 [Baumert
et al., 2005]. To place global resource-use inequality into perspective, it would require global resource-use
and waste production at least 2 to 5 times higher than it is now to bring the average levels of the 82%
of the world’s people living in developing countries up to the average levels of developed countries today
[Krausmann et al., 2008a]. The near-tripling in CO2 emissions per capita in China from just 1990 to
2010 demonstrates the similar potential increases that could take place in the less developed world if this
economic disparity is reduced [Balatsky et al., 2015]. Despite making China a focus of global concern
because it became the single largest energy user and carbon emitter, China’s 2010 per capita energy
use (1.85 tonnes of oil equivalent) was actually still below the world average (1.87 toe) [OECD, 2014;
Lawrence et al., 2013]. The rest of the developing world, with the potential to reach similar levels of per
capita emissions, has more than three times China’s population. Furthermore, China’s 2010 per capita
carbon emissions (6.2 metric tons) were still only about a third of the US (17.6 metric tons) [World Bank,
2014a], indicating much more growth can still occur [Balatsky et al., 2015].

However, overall inequality in resource consumption and waste generation is greater than what these
comparisons between countries demonstrate since resource consumption within countries is skewed towards
higher income groups. In some countries, the Gini coefficient for carbon emissions (e.g. 0.49 in China
and 0.58 in India [Hubacek et al., 2016]) is actually higher than the Gini coefficient for income (0.42 and
0.34 in 2010, respectively [World Bank, 2014b]). Rather than disaggregating resource consumption within
countries, using national per capita GDP calculations and projections provides a distorted understanding
of the distribution and characteristics of resource-use and waste generation. Consumption patterns and
associated per capita shares of resource-use and pollution differ enormously, and using a consumption-
based calculation rather than a national territorial production-based approach demonstrates even further
the extent of global economic and environmental inequality: About 50% of the world’s people live on less
than $3 per day, 75% on less than $8.50, and 90% on less than $23 (US$ at current Purchasing Power
Parity). The top 10%, with 27.5 tons CO2 per capita, produce almost as much total carbon emissions
(46% of global total) as the bottom 90% combined (54%) with their per capita carbon emission of only
3.6 tons CO2. [Hubacek et al., 2016; Lawrence et al., 2013]. (See Fig. 2).

Furthermore, even if per capita emissions stabilize or decline in the developed countries, population
growth in these wealthy countries will remain a major driver of future increases in resource-use and
emissions. While some consider population growth a serious issue only in very poor countries, large
population growth is still projected for some of the wealthiest countries today. For example, US, Canada,
Switzerland, Sweden, Norway, Australia, and New Zealand are each projected to grow by about an
additional 40 to 80%.9 Population growth in the developed countries is likely to be much higher than these
UN estimates project because these estimates include arbitrary projections of very low future immigration
from less developed countries.10 A model that uses these UN population projections incorporates these
arbitrary and unrealistic assumptions into their projections, undermining its reliability. This is one reason
why it is essential to project demographic variables endogenously within the models. One result of such
unrealistically low projections of future migration to the developed countries is to produce lower estimates
of future total emissions of the developed countries, which means the developed countries are not required
to make as much effort today to lower their own emissions.11

Furthermore, the UN projections of a relatively stable population for the whole of the developed
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living of those earning >$23/day would require ~10 times total carbon emissions.

Figure 2: Global inequality in carbon emissions.

world depend on dramatic, and highly unlikely, declines projected in a handful of key countries. Japan,
for example, must decline by 34%, Germany by 31% and Russia by about 30% for the projected stability
in total developed country population to be born out.12 In addition, countries often highlighted for their
low birth rates, like Italy and Spain, are not projected to decline by even 1% for decades. Small increases
in fertility and/or immigration could extend that period for decades longer. Even without those increases
in fertility or immigration, the total population of developed countries is not projected by the UN to peak
until about 2050, and trajectories beyond that are very difficult to predict given their high dependence
on future policies.13

Since population is stabilizing in some countries, it is often thought that the human population
explosion of the 20th century (growing by a factor of about 4) is over, and since rates of growth have been
declining, family planning and population growth is no longer a concern. However, the UN projections of
a stabilization in global population [United Nations, 2013a] are so far into the future (after 2100) that the
projections are unreliable [Warren, 2015] and global stabilization itself is highly uncertain [Heilig et al.,
2010]. In fact, alternate projection methodologies suggest with much more certainty that stabilization is
unlikely to occur [Gerland et al., 2014]. Furthermore, even the UN projections are based on large assumed
decreases in fertility rates in much of the world. If those projected decreases in fertility rates are off by
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only 0.5 births per woman (an error of less than 10% in many high fertility countries), the date at which
the world reaches 11 billion will occur 5 decades earlier and will raise the global total population by
2100 to nearly 17 billion and still rapidly growing [United Nations, 2013a]. Current projections should be
understood in the context of past projections that have overestimated fertility declines.14 Past mistaken
projections reflect the use of highly questionable assumptions about fertility rate declines in developing
countries [Heilig et al., 2010] that tend to reproduce a “natural” decline following the trajectory of more
developed countries. Yet the empirical record shows that reductions (or increases) in fertility rates reflect
a complex range of sociodemographic, economic, and policy conditions [Potts, 1997; Campbell et al.,
2006; Lutz et al., 2014; Luci-Greulich and Thévenon, 2013; Campbell et al., 2013; Bongaarts, 2016; Potts,
2014]. If those conditions are not present, the projected declines will not necessarily occur, as can be
seen in countries like Niger (7.4 births per woman in 1970, 7.6 in 2012) [PRB, 2014; Potts et al., 2011].
Needless to say, the use of demographic projections with overestimated fertility declines again produces
underestimated projections of future resource-use and emissions.

Even with these assumptions of large fertility declines in the projections, each additional billion humans
added will not be spread evenly across the planet. The vast majority of the growth will be concentrated
in countries that today continue to have very high rates of fertility (about 25 countries above 5, 45 above
4, and 65 above 3). These countries are also the lowest-income countries in the world, with the lowest
resource-use per capita, which means that the majority of population growth is taking place precisely in
regions with the highest potential for growth in resource-use per capita over the coming decades [Lawrence
et al., 2013], and the growth of the total impact is the product of the two. For example, the lowest-income
continent, Africa, which had 230 million people in 1950 and over a billion in 2010 (a four-fold increase in
one lifetime) is currently on track to add another 3 billion in the next 85 years (another four-fold increase
in one lifetime). Nigeria, by itself, is projected to reach almost 1 billion people. These high projections
already assume very large decreases in fertility rates from their current average levels of approximately 5
children/woman in Sub-Saharan Africa. (Without this projected decrease in fertility rates, Africa alone
would add 16 billion rather than 3 billion more people by 2100 [United Nations, 2013a].) The UN medium
range projections show that the developing world (not including China) will grow by an additional 2.4
billion people in just the next three and a half decades, and a total of an additional 4 billion by 2100. Due
to these uneven population growth rates, about 90% of the world’s population will be living in today’s less
developed countries, with most of the growth in the poorest of these countries [United Nations, 2013a].15

Current projections of future resource-use and greenhouse gas emissions used in the Intergovernmental
Panel on Climate Change (IPCC) reports and Integrated Assessment Models (IAMs, discussed further in
Section 3) also depend heavily on a continuation of high levels of global economic inequality and poverty
far into the future. Projections that global resource-use and emissions will not rise very much due to
rapid population growth in the poorest countries are based on the assumption that those countries will
remain desperately poor by the standards of developed countries. (This assumption again provides the
added benefit for today’s wealthy countries that the wealthy countries have to make less effort today
to reduce their own emissions. Given total global carbon emissions targets, projections of low economic
growth in poor countries translate into less stringent carbon reduction requirements in wealthy countries
[Raupach et al., 2014; Stanton, 2011].) However, China’s recent rapid rise in emissions per capita shows
this is a potential future path for the rest of the developing world. To argue otherwise requires assuming
that today’s developing countries will remain in desperate poverty, and/or will adopt technologies that
the developed countries themselves have yet to adopt. Real world CO2 emissions have tracked the high
end of earlier emissions scenarios [Friedlingstein et al., 2014], and until the currently wealthy countries
can produce a large decline in their own emissions per capita, it is dubious to project that emissions
per capita in the less developed countries will not continue on a trajectory up to the levels of currently
wealthy countries.16

As we will show, all of these points raise the critical issue of the accuracy and reliability of the
assumptions underlying the projections of key Human System variables, such as inequality, population,
fertility, health, per capita GDP, and emissions per capita. These are the central elements in many
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of the standard models used to explore the future of humanity and the environment, such as various
Integrated Assessment Models used to guide policy, and models used by the IPCC whose output guides
international negotiations on energy use and emissions. Common to these models is their deficiency in
capturing dynamic bidirectional feedbacks between key variables of the Human System and the Earth
System; instead, they simply use independent projections of Human System variables in Earth System
models.

3 Human System threatens to overwhelm the Carrying Capacity and Ecosystem
Services of Earth System.

Economic theories that endorse limitless growth are based on a model of the economy that, in essence, does
not account for the resource inputs and waste absorption capacities of the environment, and the limitations
of technological progress and resource substitutability. In other words, these theories essentially model
the economy as a perpetual motion machine [Daly, 1996]. But in the real world, economic activity
both consumes physical material and energy inputs and produces physical waste outputs. The Earth
System performs the functions (“ecosystem services”) of providing both the Sources of these material and
energy inputs to the human economy, as well as the Sinks which absorb and process the pollution and
waste outputs of the human economy. See Figs. 3 and 4 [Daily, 1997; Kareiva et al., 2011; Millennium
Ecosystem Assessment, 2005; Daly, 1996; Daily et al., 2009]. Since the scale of the Human System
has grown dramatically relative to the Earth System’s capacity to provide these ecosystem services, the
problems of depletion and pollution have grown dramatically.

Herman Daly has pointed out that the magnitude and growth rates of resource input and waste output
are not sustainable: “We are drawing down the stock of natural capital as if it was infinite” [Daly and
Farley, 2003]. For example, the rapid consumption of fossil fuels is releasing vast stocks of carbon into the
atmospheric and ocean sinks at a rate about a million times faster than Nature accumulated these carbon
stocks.17 Furthermore, while certain sectors of global society have benefited from the growth of the past
200 years, the environmental consequences are global in their impact, and the time scale of degradation of
the resulting waste products (e.g., emissions, plastics, nuclear waste, etc.) is generally much longer than
they took to produce or consume. Contrary to some claims within the field of Economics, physical laws
do place real constraints on the way in which materials and energy drawn from the Earth System can be
used and discharged by the Human System [Georgescu-Roegen, 1971; Ruth, 1993, 2006; Cleveland and
Ruth, 1997]. To be sustainable, human consumption and waste generation must remain at or below what
can be renewed and processed by the Earth System.

It is often suggested that technological change will automatically solve humanity’s environmental sus-
tainability problems [Solow, 1974; Nordhaus et al., 1973; Simon, 1981]. However, there are widespread
misunderstandings about the effects of technological change on resource-use. There are several types of
technological changes, and these have differing effects on resource-use. While some changes, such as in ef-
ficiency technologies, can increase resource-use efficiency, other changes, such as in extraction technologies
and consumption technologies, raise the scale of resource extraction and per capita resource consumption.
In addition, absent policy effects, even the increased technological efficiencies in resource-use are often
compensated for by increases in consumption associated with the “Rebound Effect” [Polimeni et al., 2008;
Greening et al., 2000; Ruth, 2009; Smil, 2008]. Furthermore, advances in production technologies that
appear to be increases in productivity are instead very often due to greater energy and material inputs,
accompanied by greater waste outputs. While the magnitude and even the sign of the effect of techno-
logical change on resource-use varies greatly, the empirical record shows that the net effect has been a
continued increase in global per capita resource-use, waste generation, and emissions despite tremendous
technological advances.

While per capita emissions of developed countries appear to be stabilizing when measured within the
country of production, this is largely due to the shift in the location of energy-intensive manufacturing
to developing countries, and estimates of developed countries’ per capita emissions measured based on
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Human System-Earth System Relationship

The Human System is within the Earth System: 

- ES provides the sources of the inputs to HS.

- HS outputs must be absorbed by ES sinks.

However, current models are not bidirectionally coupled.

Figure 3: Relationship of the Human System within the Earth System, not separate from it (after Daly
and Farley [2003]). The Earth System provides the sources of the inputs to, and the sinks that absorb
the outputs of, the Human System.

their consumption show that they continued to grow [Peters et al., 2011; Davis and Caldeira, 2010; Weber
et al., 2008; Yu et al., 2013; Feng et al., 2011a; Peters, 2008; Peters et al., 2012; Le Quéré et al., 2014;
Sathaye et al., 2011]. Even if today’s industrialized societies can stabilize their resource-use (at probably
already unsustainable levels), large parts of the world are in the midst of this industrial transition and the
associated technological regime shift from agrarian to industrial society that greatly increases per capita
resource-use and waste production [Krausmann et al., 2008b; Schaffartzik et al., 2014].18 For example,
from just 1971 to 2010, total primary energy use per capita in Korea increased by a factor of 10, from 0.52
to 5.16 tonnes of oil equivalent (toe) [OECD, 2014]. Therefore, technological advancement can add to the
problems of global sustainability, rather than solve them. The question is not only whether technology
can help solve environmental sustainability challenges, but also what policies and measures are required
to develop the right technologies and adopt them in time. Technological advances could, and should,
be part of the solutions for environmental and sustainability problems, for example, by transitioning to
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HS outputs were small relative to absorption of ES sinks.

Now, HS inputs and outputs are so large relative to the ES, 

they threaten to deplete its sources and overwhelm its sinks.

Figure 4: Growth of the Human System has changed its relationship with the Earth System and thus
both must be modeled interactively to account for their feedback on each other.

renewables, increasing use-efficiency, and fostering behavioral changes to cut resource-use and emissions,
particularly in the high resource-using countries. But these technological solutions do not just happen by
themselves; they require policies based on scientific knowledge and evidence to guide and support their
development and adoption.

An important concept for the scientific study of sustainability is Carrying Capacity, the total con-
sumption — determined by population, inequality, and per capita consumption — that the resources of a
given environment can maintain over the long term [Catton, 1980; Daly and Farley, 2003].19 Consumption
of natural resources by a population beyond the rate that nature can replenish overshoots the Carrying
Capacity of a given system and runs the risk of collapse. Collapses in population are common in natural
systems and have occurred many times in human societies over the last 10,000 years.20

To study key mechanisms behind such collapses, Motesharrei et al. [2014] developed a two-way coupled
Human and Nature Dynamic model, HANDY, by adding accumulated wealth and economic inequality
to a predator-prey model of human-nature interaction. The model shows that both economic inequality
and resource over-depletion can lead to collapse, in agreement with the historical record. Experiments
presented in that paper for different kinds of societies show that as long as total consumption does not
overshoot the Carrying Capacity by too much, it is possible to converge to a sustainable level. However,
if the overshoot is too large, a collapse becomes difficult to avoid (see Fig. 5).21 Modern society has
been able to grow far beyond Earth’s carrying capacity by using nonrenewable resources such as fossil
fuels and fossil water. However, results from the model show that an unsustainable scenario can be made
sustainable by reducing per capita depletion rates, reducing inequality to decrease excessive consumption
by the wealthiest, and reducing birth rates to stabilize the population [Motesharrei et al., 2014]. The key
question is whether these changes can be made in time.
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Figure 5: Example results from Motesharrei et al. [2014].

Current models of climate change include sea level rise, land degradation, regional changes in temper-
ature and precipitation patterns, and the consequences for agriculture, but without modeling the feed-
backs that these significant impacts would have on the Human System, such as geographic and economic
displacement, forced migration, destruction of infrastructure, increased economic inequality, nutritional
sustenance, fertility, mortality, conflicts, and spread of diseases or other human health consequences [Ruth
and Ibarrarán, 2009; Guzmán et al., 2009].

For example, nearly all features of the hydrologic system are now impacted by the human system
[Wagener et al., 2010] with important feedbacks onto humans, e.g., snowpack decline due to climate change
[Barnett et al., 2008] reduces water availability; agricultural processes further affect water availability and
water quality [Gordon et al., 2008]; land use changes can reduce groundwater recharge [Scanlon et al.,
2006], and thus many populations face both reduced water availability and increased flood frequency
and magnitude [Di Baldassarre et al., 2009]. Furthermore chemicals used in hydraulic fracturing, which
involves cracking shale rock deep underground to extract oil and gas, can contaminate groundwater
resources [Vaidyanathan, 2016; Jackson et al., 2015; DiGiulio and Jackson, 2016]. In addition, the injection
of wastewater from oil and gas operations for disposal into deep underground wells is also altering the
stresses of geologic faults, unleashing earthquakes [Shirzaei et al., 2016].22 Increases in the frequency and
magnitude of extreme weather events can impact agriculture and ecosystems [Rosenzweig et al., 2001;
Easterling et al., 2000].

Changes in the structure and functions of the ecosystem can also pose important threats to human
health in many different ways [Myers et al., 2013]. Climate, climatic events (e.g., El Niño), and envi-
ronmental variables (e.g., water temperature and salinity) can play a fundamental role in the spread of
diseases [Colwell, 1996; Lipp et al., 2002; Pascual et al., 2000; Lobitz et al., 2000]. A recent report by
the United States Global Change Research Program illustrates how climate change could affect human
health through various processes and variables such as temperature-related death and illness, air quality,
extreme events, vector borne diseases, water-related illness, food safety and nutrition, and mental health
and wellbeing [Crimmins et al., 2016].23 Environmental catastrophes can result in the decline of national
incomes for a few decades [Hsiang and Jina, 2014], and higher temperatures can severely affect human
health [Romeo Upperman et al., 2015] and reduce economic productivity [Hsiang, 2010]. This effect is
in addition to the well-established reduction in agricultural yields due to higher temperatures [Schlenker
and Roberts, 2009; Peng et al., 2004; Lobell et al., 2011; Lobell and Field, 2007; Schlenker and Lobell,
2010; Moore and Lobell, 2015]. Climate could also be a strong driver of civil conflicts [Hsiang et al., 2011,
2013; Burke et al., 2009; Kelley et al., 2015; Ban, 2007]. Environmental change is also a known trigger of
human migration [Myers, 2002; Feng et al., 2010b; Barbieri et al., 2010]. These, in turn, will significantly
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increase the unrealistically small future migration projections described in Section 2. In fact, climate
change alone could affect migration considerably through the consequences of warming and drying, such
as reduced agricultural potential, increased desertification and water scarcity, and other weakened ecosys-
tem services, as well as through sea level rise damaging and permanently inundating highly productive
and densely populated coastal lowlands and cities [Houghton et al., 1992; IPCC, 2001, 2007; Stern, 2007].
Furthermore, the impacted economic activities and migration could then feed back on human health [Ruiz
et al., 2000]. Bidirectional coupling is required to include the effects of all of these feedbacks.

4 Bidirectional Coupling of Human System and Earth System Models is Needed.
Proposed Methodology: Dynamic Modeling, Input-Output Models, Data Assimi-
lation

Coupled systems can reveal new and complex patterns and processes not evident when studied separately.
Unlike systems with only unidirectional couplings (or systems that just input data from extrapolated or
assumed projections), systems with bidirectional feedbacks often produce nonlinear dynamics that can
result in counterintuitive or unexpected outcomes [Liu et al., 2007]. Nonlinear systems often feature
important dynamics which would be missed if bidirectional interactions between subsystems are not
modeled. These models also may call for very different measures and policy interventions for sustainable
development than those suggested by models based on exogenous forecasts of key variables.

The need for bidirectional coupling can be seen from the historical evolution of Earth System modeling.
In the 1960s, atmospheric scientists developed the first mathematical models to understand the dynamics
of the Earth’s climate, starting with atmospheric models coupled to simple surface models (e.g., Manabe
et al. [1965]). Over the following decades, new components such as ocean, land, sea-ice, clouds, vegetation,
carbon, and other chemical constituents were added to make Earth System Models (ESMs) more physically
complete. These couplings needed to be bidirectional in order to include feedbacks [Manabe et al., 1965].
The importance of accounting for bidirectional feedbacks is shown by the phenomenon of El Niño-Southern
Oscillation (ENSO), which results from the coupled dynamics of the ocean-atmosphere subsystems. Until
the 1980s, atmospheric and ocean models were unidirectionally coupled (in a simple, “one-way” mode):
the atmospheric models were affected by sea surface temperatures (SST) but could not change them,
and ocean models were driven by atmospheric wind stress and surface heat fluxes, but could not change
them. Such unidirectional coupling could not represent the positive, negative, and delayed feedbacks
occurring in nature that produce ENSO episodes. Zebiak and Cane [1987] developed the first prototype
of a bidirectional coupled ocean atmosphere model. This model, for the first time, allowed prediction of El
Niño several seasons in advance [Cane et al., 1986]. Similarly, improving the modeling of droughts requires
bidirectional coupling of the atmosphere and land submodels (see, for example, Koster et al. [2009]).
Most current climate models have since switched to fully coupled atmosphere-ocean-land-ice submodels.
This example shows that we can miss very important possible outcomes if the model fails to consider
bidirectional feedbacks between different coupled components of systems that the model represent. Since
the Human System has become dominant, it is essential to couple the Earth and Human Systems models
bidirectionally in order to simulate their positive and negative feedbacks, better reflecting interactions in
the real world.24

This coupling process has taken place to a certain extent, but the coupling does not include bidi-
rectional feedbacks between the Human and Earth Systems. Energy and Agriculture sectors have been
added to Earth System Models (ESMs) creating comprehensive “Integrated Assessment Models” (IAMs).
There are now several important, advanced IAMs, including MIT’s IGSM, US DOE’s GCAM, IIASA’s
MESSAGE, the Netherlands EAA’s IMAGE, etc.25 [Prinn et al., 1999; Sokolov et al., 2005; Edmonds
et al., 1994; Calvin et al., 2013; Nakicenovic and Riahi, 2003; MNP, 2006]. However, in the IAMs, many
of which are used in producing the IPCC reports, population levels are obtained from a demographic
projection like the United Nations’ population projections discussed in Sections 1 and 2, which do not
include, for example, impacts that climate change may have on the Human System [Nobre et al., 2010].
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In today’s IAMs, tables of projected demographic and socioeconomic variables determine changes in
resource-use and pollution/emission levels, which in turn can determine Earth System variables such as
atmospheric temperature. However, changes in resource levels, pollution, temperature, precipitation, etc.
estimated by the IAMs cannot, in turn, impact levels of these Human System variables and properties
because they are exogenous to the IAMs. This is true even for the scenarios of the IPCC, which are
constructed without full dynamic coupling between the human and natural systems. Although there
are certain IAMs that include some couplings within human subsystems, critical feedbacks from natural
systems onto demographic, economic, and human health variables are missing, so that the coupling
between human subsystems and the Earth System in most current modeling is unidirectional, whereas in
reality, this coupling is bidirectional [Nobre et al., 2010].

Without including such coupled factors, the independent projections of population levels, economic
growth, and carbon emissions could be based on inconsistent or contradictory assumptions, and hence
could be inherently incorrect. For example, the United Nations’ population projections assume fertility
declines in today’s lowest-income countries that follow trajectories established by higher income countries.
However, the economic growth projections and, therefore, per capita carbon emission projections, assume
today’s poorest countries will not grow close to anywhere near the level of today’s wealthy countries.
The 45 lowest income countries are projected to grow to about $6,500 GDP per capita by 2100 [Stanton,
2011] but the average GDP per capita of today’s high-income countries is about $45,000. Rather than
relying on projections, the demographic component of any coupled model must include the factors that
contributed to the demographic transition in other countries, such as education, family planning, health
care, and other government policies and programs [Cohen, 2008; Potts and Marsh, 2010; Lutz et al., 2014;
Sulston et al., 2012].

Projections of key variables in a realistic model should not be based on mechanistic time-extrapolations
of those variables but rather on the intrinsic internal dynamics of the system. Specifically, key parameters
of the Human System, such as fertility, health, migration, economic inequality, unemployment, GDP per
capita, resource-use per capita, and emissions per capita, must depend on the dynamic variables of the
Human-Earth coupled system.26 Not including these feedbacks would be like trying to make El Niño
predictions using dynamic atmospheric models but with sea surface temperatures as an external input
based on future projections independently produced (e.g., by the UN) without feedbacks.

To address the above issues, the development of coupled global Human-Earth System frameworks
that capture and represent the interactive dynamics of the key subsystems of the coupled human-nature
system with two-way feedbacks are urgently needed. The global Human-Earth System framework we
propose, and represent schematically in Fig. 6, combines not only data collection, analysis techniques,
and dynamic modeling, but also Data Assimilation, to bidirectionally couple an Earth System Model
containing subsystems for Global Atmosphere, Land (including both Land-Vegetation and Land-Use
models) and Ocean and Ice, to a Human System Model with subsystems for Population Demographics,
Water, Energy, Agriculture, Industry, Construction, and Transportation. The Demographics subsystem
includes health and public policy factors that influence key variables such as fertility, disease, mortality,
and immigration rates, while the Water, Energy, Agriculture, Industry, Construction, and Transportation
subsystems include cross-national input-output modeling to provide the consumption-based resource-input
and waste-output “footprint” accounting analyses missing from the territorial-based methods.27

The need for global Earth System frameworks coupled to population drivers has been recommended
since the 1980s, in the pioneering report by the Earth System Sciences Committee of the NASA Advisory
Council, chaired by Francis P. Bretherton [NASA, 1988]. While Earth System components and needed
feedbacks were described and interaction of the Earth System and the Human System was shown in
the report, multiple subsystems of the Human System and feedbacks between those subsystems and
with the Earth System were not fully included. The coupled framework proposed here includes the
major subsystems and components of the Human System as well as their major feedbacks and risks, and
explicitly recognizes policies as a major driver of the full system.

Earth System models have long been based on integrating their dynamical equations numerically (e.g.,
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Figure 6: Schematic of a Human-Earth System with Drivers and Feedbacks.

numerical weather prediction models used by Weather Services). For Human Systems, dynamic modeling
is also a powerful tool that scientists have successfully applied to many systems across a range of economic,
social, and behavioral modeling [Hannon and Ruth, 2009; Ruth and Davidsdottir, 2009; Ruth and Hannon,
2012; Hannon and Ruth, 2014; Ruth, 1993]. The ability of dynamic models to capture various interactions
of complex systems, their potential to adapt and evolve as the real system changes and/or the level of the
modelers’ understanding of the real system improves, their ability to model coupled processes of different
temporal and spatial resolutions and scales, and their flexibility to incorporate and/or couple to models
based on other approaches (such as agent-based modeling, stochastic modeling, etc.) render them as a
versatile and efficient tool to model Coupled Earth-Human Systems [Costanza and Ruth, 1998; Hannon
and Ruth, 1994; Meadows, 2008; Sterman et al., 2012]. Since Earth System models are already dynamic,
a dynamic modeling platform would be a natural choice to model coupled Earth-Human Systems. Fig. 7
is a schematic showing an example of a model to couple energy and water resources at the local and
regional scales to human population.28

A major challenge in implementing such a framework of a coupled Earth-Human System is that it
requires tuning many parameters to approximately reproduce its past observed evolution. This task has
become easier over the last decade with the development of advanced methods of Data Assimilation com-
monly used in atmospheric sciences to optimally combine a short forecast with the latest meteorological
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Figure 7: An example of a model schematic integrating water and energy resources with human population
and health at the local and regional scales, coupled to an Earth System Model at the global scale.

observations in order to create accurate initial conditions for weather forecasts generated several times
a day by the National Weather Services (e.g., [Kalnay, 2003; Anderson, 2001; Hunt et al., 2007; Lorenc,
2003; Whitaker and Hamill, 2002]). The most advanced methods (known as 4DVar and Ensemble Kalman
Filter) are able to go over many years of observations using a dynamic forecasting model and estimate
the optimal value of model parameters for which there are no observations (e.g., Annan and Hargreaves
[2004]; Liu et al. [2014b,a]; Kang et al. [2011, 2012]; Annan et al. [2005]; Evensen [2009]; Ruiz et al. [2013]).

Uncertainty is another important challenge in producing future behavior and scenarios with models.
This problem has been addressed successfully in meteorology by using, instead of a single forecast, an
ensemble of typically 20-200 model forecasts created by adding perturbations in their initial conditions and
in the parameters used in the models. These perturbations are selected to be compatible with estimated
uncertainties of the parameters and initial conditions [Toth and Kalnay, 1993; Tracton and Kalnay, 1993;
Buizza et al., 1993, 1999]. The introduction of ensemble forecasting in the early 1990s provided forecasters
with an important measure of uncertainty of the model forecasts on a day-to-day and region-to-region
basis. This made it possible to extend the length of the US National Weather Services weather forecasts
made available to the public from 3 days to 7 days (e.g., Kalnay [2003]). A similar approach, i.e.,
running ensembles of model projections with perturbed parameters, could be used with coupled Earth-
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Human System models to provide policymakers with an indicator of uncertainty in regional or global
projections of sustainability associated with different policies and measures. Calibration and tuning of
coupled Human-Earth System models, as indicated above, could take advantage of optimal parameter
estimation using advanced Data Assimilation, rather than following the more traditional approach of
tuning individual parameters or estimating them from available observations.

Our proposed framework, together with Data Assimilation techniques, allows developing, testing, and
optimizing measures and policies that can be implemented in practice for early detection of critical or
extreme conditions that will lead to major risks to society and failure of supporting systems and infras-
tructure, and aid in the estimation of irreversible thresholds or regime-shifting tipping points [Nobre and
Borma, 2009; Lenton et al., 2008; Schellnhuber, 2009]. Moreover, it allows for detecting parameters and
externalities (such as inadequate measures or policies) that may play a significant role in the occurrence of
catastrophes and collapses [Scheffer et al., 2001; Scheffer and Carpenter, 2003; Ruth et al., 2011; Downey
et al., 2016]. By adjusting the values of those parameters found to be influential through numerical ex-
periments and simulations, short-term and long-term policy recommendations that can keep the system
within optimum levels or sustainable development targets (e.g., Millennium Development Goals or the
Post-2015 Development Agenda) can be designed and tested. This approach would allow policies and
measures that have been found to be successful in specific cases to be modeled under different conditions
or more generally.29 Effective policies and measures are needed for all sectors of the Human-Earth System
Model described above [Brundtland et al., 2012; Sulston et al., 2012]. A dynamical model of such systems
should be capable of testing the effects of various policy choices on the long-term sustainability of the
system [Ruth et al., 2011].

The track record until recently on climate change shows policy inaction is both dangerous and can
be very costly [Ruth, 2010; Stern, 2007; Sterman et al., 2012]. And yet, despite a long history of sci-
entific warnings (please see Endnote 30 for a detailed description30), the many current ecological and
economic impacts and crises, the future risks and dangers, the large number of international meetings
and conferences on the urgent need for climate policies and measures, and the adoption of some national
and regional climate policies, growth in global CO2 emissions from fossil fuels and cement has not only
remained strong but is actually accelerating. The average annual rate of growth from 2000–2009 (∼2.9%)
was almost triple the rate of the previous two decades, 1980–1999 (∼1.1%), while the most recent years,
2010–2012, have been even higher (∼3.4%) [Boden et al., 2013; Peters et al., 2011].

The sobering fact is that very little has been accomplished in establishing effective carbon reduction
policies and measures based on science. The development and implementation of policies promoting
sustainable technologies for the future (e.g., renewable energy sources) becomes even more challenging
because of intervention and obstruction by a number of vested interests for continued and expanded use
of their existing non-renewable technologies and resources (e.g., some in the coal, oil, and gas industries).
This is further complicated by some political rejection of science-based future climate projections and
unwillingness to consider alternative economic development pathways to lowering the emission of carbon
dioxide and other greenhouse gases from the Human-Earth systems. However, the commitments to reduce
carbon emissions by the vast majority of the world’s countries in the recent agreement from the COP21
in Paris could signify a major policy turning point.31

One of the anonymous reviewers pointed out that the failure of policymakers to react sufficiently to
the scientific understanding of global warming is paralleled by a similar failure with regards to scientific
knowledge about population trajectories. Family planning policies have been pushed off policy agendas
for the last few decades, and the subject of population has even become taboo. There are numerous
non-evidence-based barriers that separate women from the information and means necessary to plan
childbirths. The total fertility rate remains high in many countries not because women want many
children but because they are denied this information and technologies, and often even the right to have
fewer children. Access to family planning information and voluntary birth control is a basic human right
and should be treated as such by international institutions and policy frameworks. Similarly, there is also
an urgent need for improved educational goals worldwide. While these goals are repeatedly supported by
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both researchers and policymakers, policy implementation continues to be lacking. As a recent report by
the Royal Society explains, improved education (especially for women) and meeting the large voluntary
family planning needs that are still unmet in both developed and developing countries are fundamental
requirements of future economic prosperity and environmental sustainability. This again emphasizes the
critical need for science-based policies [Sulston et al., 2012; Lutz et al., 2014; Cohen, 2008; Brundtland
et al., 2012; NAS, 1986; NAS and Royal Society, 1992; NAS, 1963; Turner, 2009; NAS, 1999, 1971, 1993].32

The importance and imminence of sustainability problems at local and global scales, the dominant role
that the Human System plays in the Earth System, and the key functions and services the Earth System
provides for the Human System (as well as for other species), all call for strong collaboration of earth
scientists, social scientists, and engineers in multidisciplinary research, modeling, technology development,
and policymaking. To be successful, such approaches require active involvement across all disciplines
that aim to synthesize knowledge, models, methods, and data. To take effective action against existing
and potential socio-environmental challenges, global society needs scientifically-based development of
appropriate policies, education that raises collective awareness and leads to actions, investment to build
new or improved technologies, and changes in economic and social structures. Guided by such knowledge,
with enough resources and efforts, and only if done in time, human ingenuity can harness advances in
science, technology, engineering, and policy to develop effective solutions for addressing the challenges
of environment and climate, population, and development. Only through well-informed decisions and
actions can we leave a planet for future generations in which they can prosper.
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Notes

1 Planet Earth has been the habitat of humans for hundreds of thousands of years. Human life depends on the resources
provided by the Earth System: air from the Earth’s atmosphere; water from the atmosphere and rivers, lakes, and
aquifers; fruits from trees; meat and other products from animals; and over the past 10,000 years, land for agriculture,
and metals and other minerals from the Earth’s crust. Until about 200 years ago, we used renewable biomass as the
major source of materials and energy, but over the course of the past two centuries, we have instead become heavily
dependent on fossil fuels (coal, oil, and natural gas) and other minerals for both materials and energy. These nonrenewable
resources made possible both of the revolutions which drove the the growth in consumption per capita and population:
the Industrial Revolution and the Green Revolution. Our relationship with our planet is not limited to consuming its
resources. Waste is an inevitable outcome of any production process; what is produced must return to the Earth System
in some form. Waste water goes back to the streams, rivers, lakes, oceans, or into the ground; greenhouse and toxic
gases go into the atmosphere, land, and oceans; and trash goes into landfills and almost everywhere else.
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2 Using Gross Domestic Product (GDP) per capita as a rough measure of consumption per capita, the extent of the impact
of the Human System on the Earth System can be estimated from the total population and the average consumption per
capita. This can be also seen from the defining equation for GDP per capita, i.e., GDP per capita = GDP / Population.
One may rewrite this equation as GDP = Population × GDP per capita. By taking variations, we get:

δGDP

GDP
=

δPopulation

Population
+

δGDP per capita

GDP per capita

This equation simply means that the relative change in the total GDP is comprised of two components, i.e., the relative
changes in population and GDP per capita. A graphical demonstration of this decomposition can be seen in the inset of
Fig. 1. Data from Maddison [2001], with updates from the Maddison Project, 2013 (for the underlying methodology of
the updates see Bolt and van Zanden [2014]). Population data for the inset from United Nations [2013b].

3 In fact, the 2015 Revision has already raised the global total in 2100 by 360 million to 11.2 billion just from the last
estimate published in 2013 [United Nations, 2015].

4 While there has been some reduction of the energy- and emissions-intensity of economic growth in wealthy countries,
one has to be cautious about extrapolating recent improvements, as small as they may be, because these improvements
have been at least partly due to the outsourcing of energy-intensive sectors to poorer countries [Sathaye et al., 2011;
Feng et al., 2011a; Davis and Caldeira, 2010; Weber et al., 2008; Yu et al., 2013; Peters, 2008; Peters et al., 2011, 2012;
Le Quéré et al., 2014; Muñoz et al., 2009; Bruckner et al., 2012; Wiedmann et al., 2015], and because there are basic
physical limits to further efficiency improvements, especially in the use of water, energy, food, and other natural resources
[Turral et al., 2010; Ruth, 1993, 1995a,b, 2006].

5 For example, between 1950 and 1984, the production of grains increased by 250% due to the use of fossil fuels for
fertilization, mechanization, irrigation, herbicides, and pesticides [Kendall and Pimentel, 1994]. These technological
advances, together with the development of new seed varieties, are referred to as the “Green Revolution” that allowed
global population to double in that period [Ramankutty et al., 2002].

6 Thus, while the rate of materials intensity of GDP growth has declined (very slowly: 2.5 kg/$ in 1950, 1.4 kg/$ in 2010),
the per capita rate continues to increase. The only materials category whose per capita use has remained relatively
stable is biomass [Krausmann et al., 2009; Schaffartzik et al., 2014], probably reflecting the physical limits of the planet’s
regenerating natural resources to continue to provide humans with ever-growing quantities of biomass [Seppelt et al.,
2014; Cleveland and Ruth, 1998]. (See Motesharrei et al. [2014] for a conceptual model of regenerating natural resources.)

7 In some estimates, as much as 10 to 15 million years for carbon [Tripati et al., 2009].

8 Rates of deforestation and agricultural expansion have accelerated in recent years with extensive new infrastructure
providing conduits for settlement, exploitation and development. Even within the remaining habitat, fragmentation is
causing rapid species loss or alteration, and is producing major impacts on biodiversity, regional hydrology, and global
climate, in particular in tropical forests, which contain over half of Earth’s biodiversity and are an important driver in
the climate system. Ongoing worldwide habitat fragmentation, together with anthropogenic climate change and other
human pressures, may severely degrade or destroy any remaining ecosystems and their wildlife [Laurance et al., 2002;
Laurance, 2004; Hanski et al., 2013; Lewis et al., 2015; Gibson et al., 2013; Powell et al., 2015; Bierregaard et al.,
1992; Laurance et al., 1997; Ferraz et al., 2003; Laurance et al., 2000]. For example, the Living Planet Index, which
measures biodiversity based on 14,152 monitored populations of 3,706 vertebrate species, shows a staggering 58% decline
in populations monitored between 1970 and 2012 [WWF, 2016]. Continuation of these trends could result in the loss of
two thirds of species populations by 2020 (only 4 years from now) compared to 1970 levels (i.e., in just half a century).

9 The US, one of the highest resource-use per capita countries in the world (e.g., with an energy consumption per capita
4 times that of China and 16 times that of India in 2010 [Lawrence et al., 2013]), is projected to grow in population by
about 50% from both natural increase and immigration, generating a very large increase in total resource-use and waste
generation for the US alone.

10 For example, while Africa’s population is projected to rise over 6-fold from 366 million in 1970 to 2.4 billion in 2050,
the UN’s projection of annual net emigration from Africa remains about constant until 2050, at ∼500,000, similar to
the average from 1970 to 2000, thus the projected percentage emigrating declines sharply. (For comparison, between
1898 and 1914, ∼500,000 people emigrated each year just from Italy alone, when its population was only 30-35 million.)
Then, from 2050 to 2100, the annual net emigration is arbitrarily projected to smoothly decline to zero, even as Africa’s
projected population continues rising to over 4 billion [United Nations, 2013a]. However, recent international migration
has increased on average with global population [Abel and Sander, 2014] and net migration to the developed countries
has increased steadily from 1960 to 2010 [United Nations, 2013a] and more explosively recently. Thus, the UN projection
of emigration seems unrealistically low, both relative to its increasing population and in the context of a rapidly aging,
and supposedly shrinking, population in the developed countries, as well as recent migration pattern alterations following
conflicts and associated social disruptions. The United Nations High Commissioner on Refugees (UNHCR) estimates
that by the end of 2015, a total of 65.3 million people in the world were forcibly displaced, increasing at a rate of about
34,000 people per day. There are 21.3m refugees worldwide, with more than half from Afghanistan, Syria, and Somalia
[UNHCR, 2016]. Yet this figure only reflects refugees due to persecution and conflict but does not include refugees as
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a result of climate change, famines, and sea level rise. Net migration in 2015 to Germany alone was 1.1m [DESTATIS,
2016].
The UN’s 2012 projections of migration for other regions are similarly arbitrary and unrealistic. Net annual emigration
from Latin America is projected to decline from nearly 1.2 million in 2000-2010 to about 500,000 by 2050, and then
decline to zero by 2100. Net annual immigration to Europe rose from 41,000 in 1960-1970 to almost 2 million in 2000-
2010, and explosively today due to increasing social strife, and yet, the UN’s projection for 2010-2050 is a continuous
decline in net immigration down to only 900,000 by 2050, and then a decline to zero by 2100 [United Nations, 2013a].
Even the UN Population Division itself admits, “We realize that this assumption is very unlikely to be realized but it
is quite impossible to predict the levels of immigration or emigration within each country of the world for such a far
horizon” [United Nations, 2013a].

11 In order to limit the total increase in average global temperatures within the context of current climate change negotiations
over carbon budgets, there is a maximum total amount of carbon that can be emitted globally, thus carbon emissions
must be apportioned across countries and across time. Lower estimates of migration to developed countries means lower
estimates of emissions in the future in developed countries, which means the developed countries are not required to
make as much effort today to lower their own emissions [Stanton, 2011].

12 These dramatic declines appear highly unlikely given that countries like Japan and Germany have not yet declined by
more than about 1% [United Nations, 2013a], and already their governments have enacted a series of policies to encourage
higher birth rates. In fact, there is evidence for the efficacy of various family policies in the recent fertility rebounds
observed in several developed countries [Luci-Greulich and Thévenon, 2013]. Similarly, Russia, which saw its fertility
rate plunge after 1989 (reaching a low of 1.19 in 1999 from 2.13 in 1988), enacted pro-natalist policies and liberalized
immigration. The fertility rate has since rebounded, and the population decline reversed in 2009.

13 Despite widespread talk of population decline, it is important to emphasize that the only countries in the world to have
experienced any declines beyond about 1% have all been associated with the special circumstances of the collapse of the
former Soviet Bloc (and some microstates, such as a few island nations), and even in these cases, migration has played
a major role in population changes. This is even true within Germany, where the only Länder (provinces) which have
declined significantly in population are all from the former East Germany.

14 For example, the 1999 UN projections significantly overestimated the time it would take to add the next billion people
[United Nations, 1999]. Worse still, the 2015 estimate for the world’s total population in 2100 [United Nations, 2015]
has gone up by over 2 billion just since the 2004 estimate [United Nations, 2004]. Even the 2010 UN projections had
to be revised upwards in 2012 because previous estimates of total fertility rates in a number of countries were too low,
and in some of the poorest countries the level of fertility appears to have actually risen in recent years [United Nations,
2013a; Lesthaeghe, 2014; NAS, 2016], and the 2012 estimates have again been revised upwards in 2015 [United Nations,
2015]. To put all this in perspective, the 2004 estimates projected a peak in world population of 9.22 billion, but in the
2015 projection, 9.22 billion will be reached as early as 2041, and will still be followed by at least another 6 decades of
growth.

15 Poorer populations are expected to be more heavily impacted by climate change and other mounting environmental
challenges despite having contributed much less to their causes [Ruth and Ibarrarán, 2009; IPCC, 2001, 2007; World
Bank Group, 2014]. International and internal migration is increasingly being seen as an important component of
adaptation and resilience to climate change and a response to vulnerabilities from other environmental risks. Given the
aging social structures in some parts of the world, policies that support increased migration could be important not
only for environmental adaptation, but also for the realization of other socioeconomic and demographic goals. Thus,
migration will help both the sending and receiving countries. Of course, given the scale of projected population growth,
migration alone is unlikely to be able to balance the regional disparities.

16 The scientific community has urged limiting the global mean surface temperature increase relative to pre-industrial values
to 2◦C. The economic challenges of staying on a 2◦C pathway are greater the longer emission reductions are postponed
[Iyer et al., 2015]. Given the role that developed countries have played historically in the consumption of fossil fuels,
and their much higher per capita carbon emissions today, it is imperative that the developed countries lead the way
and establish a successful track record in achieving such reductions. Thus, it is positive that at the United Nations
Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COP21) in Paris in December 2015,
governments crafted an international climate agreement indicating their commitments to emissions reduction for the near
term (to 2025 or 2030). Most importantly, the US committed to reduce economy-wide greenhouse gas (GHG) emissions
below 2005 levels by 26–28% in 2025, and the EU has committed to reduce 2030 GHG emissions relative to 1990 by
40% (excluding emissions from land-use changes). Assuming that the goals of the Intended Nationally Determined
Contributions (INDCs) are fulfilled, the results in Fawcett et al. [2015] and Iyer et al. [2015] show that a successful
Paris agreement on near-term emissions reductions will be valuable in reducing the challenges of the dramatic long-term
transformations required in the energy system to limit global warming to 2◦C. The Paris framework will succeed even
further if it enables development of subsequent pathways leading to the required additional global emissions reductions.

17 As another example, millions of metric tons of plastic enter the oceans every year and accumulate throughout the world’s
oceans, especially in all subtropical gyres [Jambeck et al., 2015; Cózar et al., 2014].
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18 The effect of technological change can be observed in the transition from agrarian to industrial society. This industrial-
ization raised agricultural yields largely due to increasing inputs, thereby allowing rapid human system expansion, but
it also generated a societal regime shift that greatly increased per capita resource-use and waste generation [Krausmann
et al., 2008b].

19 One can generalize the definition of Carrying Capacity (CC) to any subsystem with different types of natural resources
coupled with sociodemographic variables. For example, the subsystems for water, energy, and agriculture — each
coupled bidirectionally to human sociodemographic variables and to each other — result in Water CC, Energy CC, and
Agriculture CC. Water CC can be defined as the level of population that can be sustained at a particular per capita
consumption and a given level of water sources and supply in the area under study. In general, this level depends on both
human and natural factors. For example, Water CC is determined by the natural flow rate of water into and out of the
area, precipitation and evaporation, withdrawal rate from water sources, dispensing technology, recycling capacity, etc.
Moreover, Water, Energy, or Agriculture CC in a certain area can be imported from other regions to temporarily support
a larger population and consumption [Feng et al., 2011a; Würtenberger et al., 2006; Rees, 1996]. Recent literature has
emphasized the integrated nature of agricultural, energy, and water resources, and modeling the interactions of these
subsystems is essential for studying the food-energy-water nexus [Bazilian et al., 2011; Waughray, 2011; Hussey and
Pittock, 2012; Dale et al., 2011; Khan and Hanjra, 2009]. In order to understand and model either Human or Earth
Systems, we must model all these natural and human subsystems interactively and bidirectionally coupled.

20 A recent study focusing on the many collapses that took place in Neolithic Europe concluded that endogenous causes, i.e.,
overrunning Carrying Capacity and the associated social stresses, have been the root cause of these collapses [Shennan
et al., 2013; Downey et al., 2016].

21 Collapses could also happen due to rapid decline of Carrying Capacity (CC) as a result of environmental degradation.
Droughts and climate change can decrease natural capacities and regeneration rates, which in turn lead to a decline
of CC. (Motesharrei et al. [2014] describe how to model these factors for a generic system, termed Nature Capacity
and Regeneration Rate, and how they determine CC.) The resulting gap between total consumption and CC can lead
to conflicts and the ensuing collapses. For example, see recent literature that shows the impacts of climate change on
conflicts [Hsiang et al., 2011; Kelley et al., 2015; Hsiang et al., 2013], a potential precursor to collapses.

22 For example, “Until 2008 not a single earthquake had ever been recorded by the U.S. Geological Survey from the Dallas-
Fort Worth (DFW) area. . . Since then, close to 200 have shaken the cities and their immediate suburbs. Statewide, Texas
is experiencing a sixfold increase in earthquakes over historical levels. Oklahoma has seen a 160-fold spike in quakes. . . In
2014 the state’s earthquake rate surpassed California’s.” [Kuchment, 2016].

23 The USGCRP report states that “Current and future climate impacts expose more people in more places to public health
threats. . . Almost all of these threats are expected to worsen with continued climate change.”

24 Such interactions take place not just at a global scale but also at the ecosystem and local habitat scales. Ecosystems
at the regional and local scales provide critical habitat for wildlife species, thus preserving biodiversity, and are also an
essential source of food, fiber, and fuel for humans, and forage for livestock. Ecosystem health, composition, function,
and services are strongly affected by both human activities and environmental changes. Humans have fundamentally
altered land cover through diverse use of terrestrial ecosystems at the local scale, which then impact systems at the global
scale. Additional changes have taken place as a result of climate change and variability [Melillo et al., 2014]. Further
human pressures are projected to have additional repercussions for species survival, biodiversity, and the sustainability of
ecosystems, and in turn feedback on humans’ food security and economic development [Rosenzweig et al., 2001]. Thus, a
key challenge to manage change and improve the resilience of terrestrial ecosystems is to understand the role that different
human and environmental forces have on them, so that strategies that target the actual drivers and feedbacks of coupled
components of change can be developed and implemented. Understanding how terrestrial ecosystems function, how they
change, and what limits their performance is critically important to determine their carrying capacity for accommodating
human needs as well as serving as a viable habitat for other species, especially in light of anticipated increase in global
population and resource-consumption for the rest of this century and beyond. Biodiversity and ecosystem services
in forests, farmlands, grazing lands, and urban landscapes are dominated by complex interactions between ecological
processes and human activities. In order to understand such complexity at different scales and the underlying factors
affecting them, an integrated Human-Earth systems science approach that couples both societal and ecological systems
is needed. Humans and their activities are as important to the changing composition and function of the Earth system
as the environmental conditions and their natural variability. Thus coupled models are needed to meet the challenges of
overcoming mismatches between the social and ecological systems and to establish new pathways toward “development
without destruction” [Laurance, 2004; Hanski et al., 2013; Lewis et al., 2015; Gibson et al., 2013; Powell et al., 2015;
Bierregaard et al., 1992; Laurance et al., 1997; Ferraz et al., 2003; Laurance et al., 2000].

25 MIT: Massachusetts Institute of Technology; IGSM: Integrated Global System Modeling framework; US DOE: United
of States Department of Energy; GCAM: Global Change Assessment Model; IIASA: International Institute for Applied
Systems Analysis; MESSAGE: Model for Energy Supply Systems And their General Environmental impact; EAA:
Environmental Assessment Agency; IMAGE: Integrated Modelling of Global Environmental Change.

26 Furthermore, the use of GDP as a key measure and determinant in these future projections is itself highly problematic,
because it is a very weak measure of human well-being, economic growth, or societal prosperity [Costanza et al., 2014].

22

 by guest on D
ecem

ber 17, 2016
http://nsr.oxfordjournals.org/

D
ow

nloaded from
 

http://nsr.oxfordjournals.org/


GDP neither accounts for the value of natural capital nor human capital, ignores income and wealth inequality, neglects
both positive and negative externalities, and only captures social costs and environmental impacts to the extent that
prices incorporate them. Any economic activity, whether deleterious or not, adds to GDP as long as it has a price.
For example, labor and resources spent to repair or replace loss due to conflicts or environmental damages are counted
as if they add to — rather than subtract from — total output. Alternative measures, such as the Genuine Progress
Indicator (GPI), the Sustainable Society Indicator (SSI), the Human Development Index (HDI), and the Better Life
Index (BLI) of the Organization for Economic Co-operation and Development, have been developed [Talberth et al.,
2007; Van de Kerk and Manuel, 2008; Anand and Sen, 1994]. These measures show that, especially since the 1970s, the
large increases in GDP in the developed countries have not been matched by increases in human well-being. Integrated
and coupled Human-Earth system models will allow for the development of much more accurate and realistic measures
of the actual productivity of economic activity and its costs and benefits for human well-being. Such measures will
allow for the valuation of both natural and human capital and for defining and developing sustainability metrics that
are inclusive of the wealth of natural and human capital. They will also bring together the current disparate debates
on environment/climate, economics, demographics, policies, and measures to put the Human-Earth System on a more
sustainable path for current and future generations.

27 Input-output (IO) analysis can account for the flows of resource-inputs, intermediate and finished goods and services,
and waste-outputs, along the production chain [Miller and Blair, 2009; Murray and Wood, 2010]. By accounting for the
impacts of the full upstream supply chain, IO analysis has been used in life-cycle analysis [Hendrickson et al., 1998] and
for linking local consumption to global impacts along global supply chains [Hubacek et al., 2014; Davis and Caldeira,
2010; Lenzen et al., 2012; Peters et al., 2011]. IO models can be extended with environmental parameters to assess
different environmental impacts from production and consumption activities, including water consumption [Feng et al.,
2011a,b; Guan and Hubacek, 2007], water pollution [Guan and Hubacek, 2007, 2008], carbon dioxide emissions [Feng
et al., 2010a; Hertwich and Peters, 2009; Guan et al., 2009], land use and land cover change [Weinzettel et al., 2013;
Hubacek and Sun, 2001; Yu et al., 2013], and biodiversity [Lenzen et al., 2012]). Such models have been developed and
applied at various spatial and temporal scales. Since emissions embodied in trade have been growing rapidly, resulting in
an increasing divergence between territorial-based and consumption-based emissions, territorial measures alone cannot
provide a comprehensive and accurate analysis of the factors driving emissions nor the effectiveness of reduction efforts
[Barrett et al., 2013]. IO models can provide these consumption-based calculations and have been employed to identify
and quantify key drivers for emissions and energy consumption (such as population growth, changes of consumption
patterns, and technical progress [Feng et al., 2012; Guan et al., 2008, 2009]) as well as the environmental impacts of
social factors (such as urbanization and migration) reflecting consumption patterns of different categories of households
with high spatial detail [Baiocchi et al., 2010; Hubacek et al., 2014]. IO analysis can also be used for simulating potential
future states of the economy and the environment (e.g., Duchin [1994]), through dynamically updating technological
change and final demand, or employing recursive dynamics to explore explicit scenarios of change.

28 Many of the variables in such a model are affected by processes at the global scale, while decisions are often made at a
local scale. Choosing variables from the subsystems depends on the specific goals of the model. Reconciling various scales
spatially or temporally can be done through downscaling, aggregating, and averaging for variables defined at smaller
scales. Moreover, the human system strongly influences consumption even at these smaller local scales. For example,
Srebric et al. [2015] show that not only population size but also behavior of people at the community scale strongly
affects local energy consumption. This example shows that coupled human system models are needed at various scales to
project consumption patterns, especially for energy and water. We thank the anonymous Reviewer No. 2 for emphasizing
the importance of coupling across various scales, and for many other helpful comments.

29 There are numerous examples of policies successfully tackling many of the challenges identified in this paper. For
example, the province of Misiones, Argentina, with policies for forest protection and sustaining local incomes, stands out
by having very high, remotely-sensed values of NDVI (vegetation index) compared to the neighboring regions [Izquierdo
et al., 2008]. The state of Kerala, India, despite a very low GDP per capita (under $300 until 1990s), through policies
expanding access to education and medical care, enjoys higher life expectancy, lower birth rates, lower inequality, and
superior education compared to the rest of India [Jeffrey, 1992; Singh, 2011; Susuman et al., 2016]. Formal primary,
secondary, and tertiary education can also reduce societal inequalities and improve economic productivity [Sulston et al.,
2012; Lutz et al., 2014; Cohen, 2008; Lutz and Samir, 2011]. Education itself can also be offered in other forms. For
example, education through mass media can be influential for changing long-term cultural trends and social norms, as can
be seen in the successful attempt to reduce fertility rates in Brazil using soap operas [La Ferrara et al., 2012]. There have
also been other extremely successful non-coercive family planning policies, e.g., in Thailand, Mexico, and Iran [Pritchett,
1994; Potts, 1997; Potts and Marsh, 2010; Vahidnia, 2007; Roudi-Fahimi, 2002; Lutz et al., 2010; Abbasi-Shavazi et al.,
2009; Bongaarts, 2016]. A recent paper in PNAS [O’Neill et al., 2010] showed that slowing population growth could
provide 16–29% of the emissions reductions needed by 2050 and by 37–41% by 2100, and a study by Wire [2009] shows
family planning is four times as efficient as adopting low carbon technologies for reducing carbon in the atmosphere and
ocean.
Successful local and regional policies on air quality include California sharply reducing NO2 in Los Angeles by 6.0 ±
0.7 % per year between 1996 and 2011 through strict policies on vehicular emissions [Hilboll et al., 2013]. Maryland
succeeded in reducing SO2 emissions per unit energy produced from power plants by ∼90% [He et al., 2016]. Regulations
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have reduced levels of SO2 and NO2 over the eastern US by over 40% and 80%, respectively, between 2005 and 2015.
Over a similar period in India, these levels grew by more than 100% (SO2) and 50% (NO2), showing the possible dangers
ahead absent effective policies [Krotkov et al., 2016].

30 Anthropogenic climate change driven by carbon emissions, water vapor, and surface albedo was theorized as early as
the 19th century, and an empirical warming trend was measured by the 1930s. Scientists came to understand the
fundamental mechanisms of climate change by the 1950s and 60s (e.g., Budyko [1961]; Manabe and Wetherald [1967]).
The first international scientific Conference on the Study of Man’s Impact on Climate was held in 1971 and issued a
report warning about the possibilities of melting polar ice, reduced albedo, and other unstable feedbacks that could
lead to accelerated climate change “as a result of man’s activities” [Matthews et al., 1971]. By 1979, a US National
Academy of Sciences panel, chaired by Jule Charney, issued a report confirming the findings of climate change models
[Charney et al., 1979], and over the course of the 1980s the empirical evidence confirming ongoing climate change grew
very rapidly. In 1988, James Hansen testified before the US Congress about the near certainty of climate change. The
first IPCC Assessment Report was completed in 1990, and the Fifth in 2014, with each report successively warning of the
increasingly grave consequences of our current trajectory. The latest report warns that without new and effective policies
and measures, increases in global mean temperature of 3.7 to 4.8◦C are projected by 2100 relative to pre-industrial levels
(median values; the range is 2.5 to 7.8◦C) [IPCC, 2014]. Other national and global institutions have also warned of the
disastrous consequences of such warming (e.g., Melillo et al. [2014]). As a recent World Bank assessment [World Bank
Group, 2014, p. xvii] states, “The data show that dramatic climate changes, heat and weather extremes are already
impacting people, damaging crops and coastlines and putting food, water, and energy security at risk. . . The task of
promoting human development, of ending poverty, increasing global prosperity, and reducing global inequality will be
very challenging in a 2◦C [increase] world, but in a 4◦C [increase] world there is serious doubt whether this can be
achieved at all. . . the time to act is now.” Scientists have also long warned about the consequences of climate change for
international security (e.g., Sagdeev and Eisenhower [1990]; Brown [1989]; Barnett [2003]).

31 With more than 180 countries, covering ∼90% of global emissions, having committed to submit Intended Nationally De-
termined Contributions (INDCs), the Paris framework forms a system of country-level, nationally-determined emissions
reduction targets that can be regularly monitored and periodically escalated. While analysis [Fawcett et al., 2015] of the
INDCs indicates that, if fully implemented, they can reduce the probability of reaching the highest levels of temperature
change by 2100 and increase the probability of limiting global warming to 2◦C, achievement of these goals still depends
on the escalation of mitigation action beyond the Paris Agreement. Even if the commitments are fulfilled, they are not
enough to stay below the 2◦C pathway [Kintisch, 2015; Iyer et al., 2015; Fawcett et al., 2015], but the Paris framework
is an important start for an eventual transformation in policies and measures. Thus, the INDCs can only be a first step
in a deeper process, and the newly created framework must form an effective foundation for further actions on emissions
reductions.

32 We thank anonymous Reviewer No. 1 for guiding us to add all the important points in this paragraph and the associated
citations.
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